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From Unstable Minkowski Space to Inflation 

P.  N a r d o n e  ~ 

Received June 20, 1989 

We present a perturbative approach to the equations describing the behavior of  
a quan tum scalar field in a self-consistently generated Robertson-Walker uni- 
verse. This approach throws new light on the significance of  the Minkowskian 
instability and on the subtraction procedure which shows that a inflation 
cosmology is a possible future of  the Minkowski space. 

Traditional cosmology, as regulated by Einstein's equations, has its 
roots in a singular primordial event: the big bang. This appears to be 
inescapable, provided some general conditions on the matter energy- 
momentum tensor are fulfilled: the positivity Hawking-Penrose (HP) condi- 
tions, which correspond to rather "traditional" equations of state, usually 
encountered in the description of classical fluids. This situation is drastically 
altered in the framework of semiclassical gravity (Brout et aL, 1978, 1979a, b, 
1980), wherein the matter sources are treated quantum mechanically. It 
appears indeed that the particle production mechanism which shows up in 
this context may lead to an effective equation of state (negative pressure 
associated with particle production) (Prigogine, 1947; Prigogine and 
Geheniau, 1986; Geheniau and Prigogine, 1986; Gunzig and Nardone, 1982, 
1984; Gunzig et al., 1987; Biran et al., 1983), which violates the premises 
of the HP singularity theorem. 

Let us analyze more closely how particle production together with its 
feedback reaction on space-time expansion, responsible for this creation, 
may lead to the avoidance of the initial singularity. 

In order to avoid nonessential technical difficulties, the considerations 
will be restricted to the case of a single scalar matter field imbedded in a 
homogeneous and isotropic universe. The matter-gravitational action then 
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takes the form 

s = - l f d4x vr-z--ff e + l f d4x x/--~ ( ~ g ~ v - m 2 ~ 2  + R  q~2 (1) 

and the metric, which is conformally flat, is given by 

ds 2 = dr 2 -  a(t) 2 dl 2 = 12d~(t)2(dt 2 - dl 2) = IZcb(t)2~t~ dx ~ dx ~ (2) 

The tilde refers to Minkowskian quantities. The conformal factor lqb permits 
us to rescale the matter field �9 in the following way: 

~b = lqb~, 612= K (3) 

The action reduces then to the simple form 

o s = l f d 4 x x / - - ~ ( ~ c ~ t ~ , ~ q - - ~ t ~ 2 - m 2 1 2 f ~ 2 t ~ - f ~ c , ~ 1 3 g  c~t3 6 qb2) (4) 

The corresponding equations of motion are, for qJ, 

r/~'0~ 0,,@ -- ~- 6 q- m212@ alp2 ---- 0 (5) 

and the related Einstein equations are 

T.~(~b) = T.~(4,) +�89 ~2 (6) 

where 

1 2 1 2 1 o 1 1 2 T.~(dp) = q b q b  - g ~ ; ~ ; ~ + ~ g ~ D ~  -~g~qb cbo +g(R.~-~gg~R)cb (7) 

The traditional covariant conservation law T~;~ = 0 is now replaced by 
its Minkowskian version: 

0~(T~(~,) - T ;  (~0)) = 0 (8) 

Hence, from the restricted point of view of the energy-momentum conserva- 
tion laws, nothing forbids a priori a nontrivial realization of these laws. In 
such a case, the total T~ would permanently keep its Minkowskian zero 
energy-momentum value. In spite of this global energy-momentum 
degeneracy of the matter-gravitational system with respect to empty 
Minkowskian space, the two interacting parts T ~  and T ~  will acquire 
nonzero values starting at a given time, call it to. Hence, for t -< to the system 
is strictly Minkowskian, with both parts of its total energy-momentum 
vanishing separately, whereas for t-> to, the two matter and gravitational 
contributions T ~  and T ~ ,  respectively, are separately nonvanishing, 
although their sum is still zero. This possible realization of the conservation 
laws would then correspond to a simultaneous emergence of massive matter 
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constituents together with a curved space-time background out of an empty, 
fiat Minkowski space-time vacuum. 

The semiclassical Einstein equations are 

R.~ - �89 = K( T.~)s (9) 

where the expectation value for the energy-momentum tensor (T.~) must 
be defined by a suitable subtraction procedure. Homogeneity and isotropy 
of the metric lead to a quite simple quantification procedure for the matter 
field qJ. Let us define 

f d3 p ~p(xt)* ~ [exp(ipx)]chp(t) (10) 

The equation of motion on q~ leads then to an equation on q~p(t)"  

02c~p(t) + [p2+ m2a2(t)]Op = 0 (11) 

Let us define t ime-dependent operators A(t)  and A+(t), 

qSp = (2o9)-V2[A*_p(t) + Ap ( t)] (12) 

Ot(ap = i(og/2)l/2[ A +_p( t ) -  Ap( t) ] (13) 

where o92(t) = p2 + rn2 a2( t). 
The operators A, A + diagonalize the Hamiltonian 

[ d3p wp(t)(a~Ap+Apa*p) (14) 
H = ] (277.)3/2 

and equation (12) becomes 

, a3 
G A t_p = iogA_p +-~--~w w Av (15) 

Equation (15) shows directly pair creation of what we can call instantaneous 
particles, 

o3 
- A p a _ v )  ( 1 6 )  G(A*pAp)-~-~(ApA_p+ * * 

Let us take the vacuum state [f~) as the state of the matter defined by 

A(0)lf~)-- 0 (17) 

We can then compute the expectation value of T.~ on this state, and derive 
the corresponding "phenomenological"  energy density and pressure by 

Cbp( t ) = A t_p(O)~p( t) + Ap(O)~*( t) (18) 

dpp( t) = A~p(O)~'p( t) + Ap (0)~:*(t) (19) 
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and 

where 

O = 2a4(t) [[ ~1~ + w2(t)l (I 2] (20a) 
s 

P=6a4(t) (Jo -~2 ([~12+[p2-mZa2(t)][~12) s (20b) 

1 2 

p-3P=~a4 {fo~2 ff 2m2a2(t),,,2}~ (20c) 

O,~+w2(t)(=O, ~*O,~-cc= i (21) 

The only relevant Einstein equation is then 

3 - - -  Kp [Idl=+ o~=(t)l~123 (22) a ' -  =2a4(t)  

and the conservation law leads to 

O,(pa 4) = da3(p - 3p) (23) 

At this stage their are two obvious problems to be solved: to exhibit solutions 
of equation (22) and to select a subtraction procedure leading to finite 
expression for p and p. 

If  we require that Minkowski space-time [a( t)  = 1] must be a (trivial) 
solution, we need to subtract the vacuum fluctuation contribution to p and 
p in such a way as to obtain p =p  = 0, 

PMink = 2  27/" 2 5 s ~-0 
(24) 

m2~ f~p2~ 1 
(p--3p)Mink= lJO 2 ~  2~0}, =0  

Let us analyze a small perturbation around Minkowski space, 

a(t) = 1 + 8(t) (25) 

Using the traditional perturbation theory for the expectation value (but not 
for the S-matrix), we obtain for (4, 2) 

(nl~o21a)=(al ~+i dh[E(tO;O~(x,t)]+.., la) (26) 

where the subscript " i "  indicates interaction picturel We have 

V=�89 f d3xm2A(t)~ 2 
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where 

(1 + 6 )2 =  l + A ( t )  

It follows, order by order, 

f d3p 1 
(~2)~ (2~r) 3 2wp (27) 

(tO2),=-m2 fo ' dtl A(t,) I d3p sin2o)p(t-tl) 
(27) 3 2top 

Integration by parts leads to 

(~2), = _m2A(t) f 
d3p 1 

(2~r)3 4o93 ~-finite term (28) 

The first term of order 1 is divergent, but it can be easily seen that it is the 
first-order perturbation of the "instantaneous" vacuum fluctuation: 

f d3p 1 (29) 
(2~r) 3 2a~p(t) 

This prompts us to define a "minimal" subtraction (which can be proven 
to be consistent to all orders) by the requirement 

(a l  o ( t )  I.Q) s = (D. I o ( t )  IDa) - (.Q,I O ( t ) l f b )  (30) 

]f~,) is the "instantaneous vacuum" state. This subtraction is equivalent to 
including an infinite cosmological counterterm in the n-dimensional action 

S = S . (0 )  - S. (grav) -�89 f d"x .77_g 

with 

tn" F ( ( 2 -  n)/Z)F((n - 1)/2) 
C~ = (31) 

2V. F(1/2) 

Using this subtraction procedure, we can linearize the Einstein equation 

m2 fo ~ p2~d3P f ' dt, 8( h) cos 2wp( t -  t,) (32) 602~ = Kin2 4rr --5 2wp 3o 

The Laplace transformation 

3(s) = e-"g(t) dt (33) 
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then reduces equation (32) to the simple algebraic equation 

where 

f ( s )  
6(s)  - (34) 

1 - g ( s )  

Km4 2 [ s2)1/2 ( s + s ~ )  I 
g ( s ) - 4 8 ~ .  2 s3 (4m2+ In ~mm - s  (35) 

The existence of a real zero in the denominator (Gunzig and Nardone, 
1982, 1984; Biran et aL, 1983) in (34) will then exhibit the instability of 
Minkowski space. Because g(s )  is a decreasing function in the domain 
s: 0 ~  m, the mentioned instability reduces simply to 

Km 2 
1 <- gmax --28877.2 (36) 

So the instability of Minkowski space shows up as soon as Krn2->288~ -2. 
This instability corresponds to a global fluctuation 6(t ) ,  but we expect that 
for inhomogeneous fluctuation a(x, t), this will not change qualitatively. 

It was previously proven that, using the same subtraction procedure, 
the Euclidean de Sitter space, namely a (t) = tot -~, is an exact self-consistent 
solution if Km2>2887r 2. These two results are consistent. If the mass is 
below the threshold mass (288~-2K-1) 1/2, Minkowski is the only solution; 
on the contrary, when the mass is above this threshold, then the universe 
transits to an "inflationary" stage: the de Sitter universe. 

We have also developed a WKB-like analysis for the equation (21) in 
order to exhibit the solution ~:(t) for any function a(t ) .  This leads to 

2 1 2 1 6 dT(2vf~+1tz f + ~ v f  ) = - 1 2 u f 2 f  2 (37) 

where 

K Km2 f 2  H = a -~ da 
v = 2880rr2, /x = 1 28877.2, = d~ 

and r is the cosmological time. Equation (37) shows directly that ~ < 0 
corresponds to a symmetry-breaking mechanism: f =  0 (Minkowski space) 
is no longer the stable minimum and the universe expands until it reaches 
the stable de Sitter regime (Spindel, 1981) with H = ( - i x ~ v )  1/2. 
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